If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=11.3
We move all terms to the left:
X^2+X^2-(11.3)=0
We add all the numbers together, and all the variables
2X^2-11.3=0
a = 2; b = 0; c = -11.3;
Δ = b2-4ac
Δ = 02-4·2·(-11.3)
Δ = 90.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{90.4}}{2*2}=\frac{0-\sqrt{90.4}}{4} =-\frac{\sqrt{}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{90.4}}{2*2}=\frac{0+\sqrt{90.4}}{4} =\frac{\sqrt{}}{4} $
| 2x-1/3=2x/3+4 | | 9(x-5)-3=48 | | 4+20=c | | -28-(-33)=x/11 | | 36+u=10u | | 12h−8h=20 | | 64-5w=3w | | (3x-50)+(3x-50)=180 | | 340+x(10)=400 | | 5(2)=b | | 1x+8x=5x-36 | | 6(0.50)=a | | 7m–3(m-2)=(3m–5) | | j-17=169 | | r/10=28 | | t+626=713 | | 3x+6=-(9x-63) | | v+426=748 | | p+47=93 | | 90=q+42 | | t+44=63 | | a+12=53 | | -2(7u-1)+6u=7(u+2) | | 4(4x-7)+2(6x+15)=4 | | v-9.12=8.2 | | 4y+1=3-10y | | 148+2x=193-x | | y+6.21=8.42 | | 2=-12t | | 3/x+7=5/20/3 | | -2y-2=2(y+1) | | v-4.9=9.23 |